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Abstract

With the advance of new data acquisition and generation technologies, our
society is becoming increasingly information-driven. The datasets are get-
ting larger and more complex as new technologies emerge and they are posing
new challenges to the analysts who are trying to build an understanding of them.
Automated computational approaches and interactive visual methods have been
widely used to extract and interpret the relevant information in data analysis.
However when these methods are used alone on complex datasets, their effectiv-
ity is limited due to several factors. Most of the commonly used computational
tools often lead to hard to interpret results that may not be reliable most of the
time.

This thesis aims to enhance data analysis procedures by integrating compu-
tational tools with interactive visual methodologies. The contributions of this
thesis are mainly focused on the analysis of (very) high-dimensional data, i.e.,
hundreds and even thousands of dimensions, and cluster analysis. We intro-
duce the dual analysis approach that makes it possible to analyze the items and
the dimensions of a dataset in parallel in two linked visualization spaces. This
methodology provides a basis to visually characterize and investigate dimensions
as first-order analysis objects. We describe structure-aware analysis procedures
that are facilitated by representative factors. Moreover, we present several mech-
anisms to achieve outlier-aware analysis routines. We describe the notion of
outlyingness for the dimensions of a dataset and discuss how they can be deter-
mined and treated properly. We then focus on enhancing the dialogue between
the analyst and the computer when computational methods are used interac-
tively. We describe how different human factors come into play in visual analysis
applications and propose optimized analytical processes that try to comply with
the human capabilities. All these different approaches are demonstrated with
various use-cases performed mostly together with experts from medical, genetic,
and molecular biology domain.
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Chapter 1

Introduction

Due to recent advances in computing power and data acquisition methods,
we are now living in an information-empowered society where the analysis
of complex datasets are becoming increasingly important. One perspective on
complexity is the growing size of the datasets in terms of number of the entities,
i.e., rows of the data. This “big data” challenge is frequently investigated by
researchers in visualization, data mining, and machine learning. However, there
are other perspectives, those that are not addressed very often, which add to
this complexity. This other form of complexity often stems from the fact that
the data is collected/generated through several channels each of which carries
different characteristics. In several domains of science, engineering, and busi-
ness, such challenging datasets are becoming abundant. Analysts often refer to
either automated computational methods or visualization techniques to explore
and dig out the information in their data. While automated methods rely on the
computational capabilities of the computer, visual analysis methods exploit the
perceptual and cognitive strengths of humans in detecting structures and making
associations. The successful analysis of the increasingly complex and heteroge-
neous datasets, on the other hand, calls for a tight integration of both of these
methodologies [187].

The integration of capabilities of humans and computers has been one of the
primary goals of the field of visual analytics [I86, 113]. One common analy-
sis pattern in visual analytics (VA) is the “Analyse first, show the important,
zoom /filter, details on demand” mantra by Keim et al. [ITI]. This approach
initiates the process by computational analysis, provides interactive support to
investigate the important findings and then digs deeper into the data as the user
sees fit. The research in VA brings together methods from visualization, data
mining, data management, human-computer interaction, and human perception
and cognition to devise powerful approaches to extract relevant information from
data [ITI]. Several solutions from VA have been utilized in fields such as engi-
neering, physics, medicine, or finance to aid the analysis of the nowadays highly
challenging datasets [I13]. The success of VA applications demonstrates that
the integration of computational power and the strengths of humans has a huge
potential in developing powerful analysis methods.



4 1.1. Problem statement and challenges

1.1 Problem statement and challenges

The research in this thesis is motivated by a number of challenges and problems
arising in the explorative data analysis processes involving high-dimensional data
and cluster analysis. The primary focus of our work is related to the analysis of
high-dimensional data. With high-dimensional data, we refer to datasets with a
(very) large number of dimensions, such as hundreds and even thousands, and in
the context of this thesis, dimensions are considered as a mixture of dependent
and independent variables. The abundance of dimensions distinguishes high-
dimensional datasets from multi-dimensional (-variate) datasets which consist of
a couple of dozens of dimensions at maximum. This particularly large number of
dimensions in high-dimensional data leads to several challenges which we cover
later in this section.

Datasets that have a large number of dimensions are becoming increasingly
common in many application fields. One prominent field is biology, where high-
throughput studies are producing data at different scales (from genetic sequencing
to anatomical imaging) of the same samples [214]. For instance, the datasets to
study the activity levels of genes often consist of measurements related to thou-
sands of genes for a single sample [114]. In the field of medicine, large scale cohort
studies involve the imaging of the participants using several modalities, such as
magnetic-resonance or diffusion tensor imaging, complemented with a variety of
clinical data on the patients. Other fields that deal with high-dimensional data-
sets include spectral imaging studies [71], large scale socio-economic surveys, or
consumer activity data in business intelligence related analyses.

Most of the current computational and visual analysis approaches are tailored
for multi-dimensional datasets and they easily fail to provide successful results
when they are confronted with really high-dimensional data [2]. There are a num-
ber of factors that contribute to this limitation of the current approaches: relia-
bility and interpretability of analysis results, the inherent heterogeneity within the
dimensions, the underlying assumptions of computational tools, and no means to
perform local analysis and merge the outcomes to build a big picture of the data.
In the following, we discuss these observations and challenges in detail.

Reliability and interpretability: Both computational and visual methods do
not scale with the large number of dimensions. In computational analysis, the
results become hard to interpret and there are concerns about the reliability as
the dimensionality of the data increases. Consider, for instance, the clustering of
a 500-dimensional dataset (a 2D data table with 500 columns) using the popular
K-means algorithm [I8T]. It is not straightforward at all to correctly interpret the
resulting clusters when the computations are done on a 500-dimensional space,
neither is it possible to judge the reliability of the clusters when the distances
between the items are computed by a 500-dimensional distance metric [I18]. This
issue with distance measures is known as the “curse of dimensionality” that states
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the fact that distances between items lose their meaning in truly high-dimensional
spaces [45]. On top of this, the number of samples could possibly be low in many
cases. This results in datasets with small number of observations (small n) but
a very high number of variables (large p). Since most of the statistical methods
need a sufficiently large number of observations to provide reliable estimates,
such “wide” data matrices lead to problematic computations [29].

In visualization, on the other hand, most of the methods that are widely used
in the visual analysis of multivariate data, such as scatterplot matrices, parallel
coordinates, or linked multiple views, can not successfully handle a large number
of dimensions mainly due to the large physical screen space required to visualize
the results, e.g., consider visualizing a 500 dimensional dataset where each dimen-
sion is an axis of a parallel coordinate plot. Although there has been significant
research focusing on the scalability of visualizations in terms of data items that
are visualized, truly high-dimensional datasets remain to be a challenge for most
of the visual analysis approaches.

In order to address these issues listed above, there is the need to develop
methods that can easily cope with the high-dimensionality of the data. Carefully
designed interactive visual methodologies can guide users to give “informed” de-
cisions while using computational analysis approaches.

Heterogeneity: The heterogeneous character of the set of dimensions is a chal-
lenge for both computational and visual analysis approaches. There are several
causes of this heterogeneity. Dimensions can have difficult-to-relate scales of
measure, such as categorical, discrete or continuous. Some can be replicates of
other dimensions or encode exactly the same information acquired using a dif-
ferent method. There can be explicit relations between the dimensions that are
known a priori by the expert. And there are usually inherent structures be-
tween the dimensions that could be discovered with the help of computational
and visual analysis, e.g., correlation relations or common distributions types.
Standard methods from data mining or statistics do not consider any known het-
erogeneity within the space of dimensions which could lead to results with limited
quality. In order to achieve “successful” analysis sessions, methods that enable
an analyst to investigate the heterogeneous nature of high-dimensional datasets
should be developed.

Underlying assumptions: Most of the computational methods make assump-
tions on the structure of the data. Popular Multivariate analysis (MVA) meth-
ods such as PCA or regression analysis, for instance, assume that the data are
normally distributed, or the variance is equal over all the data, known as the
assumption of homoscedasticity [95]. Most of the methods also assume that the
data is clean of errors, missing values, and outliers. The quality and reliability of
the analysis relies heavily on whether such assumptions are met in the data. How-
ever, in real world cases, it is not often that such assumptions are met. Therefore
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there is the need for methods to check and validate whether the data conforms
to such considerations. Moreover, it is also highly important to consider several
methods/measures while performing the analysis to increase the reliability. For
instance, when using descriptive statistics analyses can also incorporate robust
statistics and methods that are resistant against outliers and problems in the
data [59]. Along the lines of these issues, there is a need to devise methods to
enable analytical procedures that are aware of the different considerations related
to the data and that can handle these properly.

Local analysis: Due to the limitations of computational approaches, analysts
have to perform their analysis on a subset of the data and thus losing the overall
picture and having problems to relate the sub-analysis they carry out. On the
other side, if the user decides to use the whole data for analytical operations,
interpreting the results become a big challenge, i.e., applying dimension reduction
on a 500-dimensional dataset. At this point, mechanisms that enable analysts to
merge the results of several local analyses performed on subsets of the data can
improve the analysis quality considerably.

In addition to the challenges related to high-dimensional data analysis, this
thesis also focuses on problems related to cluster analysis. Cluster analysis divides
data into groups (clusters) where data items within a group are similar with
respect to certain criteria [I8I]. This analysis is one of the fundamental tasks in
many data analysis scenarios and used widely in several domains [I00]. Due to
the variety of clustering algorithms and due to the fact that the notion of a cluster
varies greatly from domain to domain, the evaluation of clusters is an essential
step that needs to accompany cluster creation. Since the evaluation of clusters
depends mainly on the expertise of the analyst, interactive visual methods can
provide mechanisms to support this task.

Moreover, when the clustering of time series (temporal) data is considered,
the above mentioned issues are even more critical. We observe that most of
the algorithms developed for this task are either modifications of the static data
clustering algorithms, or time-series are converted into static representations so
that the existing algorithms can be used [I125]. As a consequence, current methods
are highly limited to properly aid the interpretation and evaluation of clusters of
temporal data. There is a pressing need to develop techniques that communicate
the information in such temporal clusters and enable a comparative analysis of
several of these structures.

1.2 Contributions

The aforementioned problems and limitations in the current data analysis ap-
proaches motivate us to carry out the research in this thesis. With our contri-
butions, we enhance the procedures involving high-dimensional data and cluster
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analysis. This is accomplished with a number of interactive and visual method-
ologies that make the informed use of computational tools possible throughout
the interactive visual data analysis process. The contributions of this thesis can
be investigated under a number of categories.

1. In order to consider the structured, heterogeneous nature of high-dimen-
sional datasets, we proposed the dual analysis approach for the interactive
visual analysis of very high-dimensional data. This method enables the
simultaneous and linked visual analysis of both the dimensions and the
items of a dataset. This methodology extends the domain of multiple linked
views with visualizations that have the dimensions of a dataset as their main
visual entities. This novel approach to visualize the dimensions enables the
analyst to investigate the different characteristics of dimensions through
the use of statistics and computational measures. Moreover, the proposed
duality in interacting with both the data items and the dimensions leads
to analyses that provide deeper insight on the relations between the items
and the dimensions.

2. A method to enable the structure-aware analysis of high-dimensional data-
sets is proposed. We introduce the interactive visual exploration and cre-
ation of representative factors as a method to consider the structures in
high-dimensional data analysis. This approach involves the creation of rep-
resentative factors, each of which represents a sub-group of the dimensions.
These representative factors are then analyzed together with the original
dimensions through the same visualizations to understand the relations be-
tween the structures and the dimensions. We present a number of methods
to create, to represent, and to evaluate the representative factors. These
mechanisms provide the means to locally use computational tools and to
visually compare and evaluate their results.

3. We present how an outlier-aware analysis of high-dimensional data can
be carried out. With this work, we focus on the dimensions that carry
“special” properties and thus stand-out from the rest of the dimensions.
We describe the notion of outlyingness for dimensions through an according
categorization. The proposed outlier-aware analysis process outlines how
to characterize, how to determine, and how to treat outlier dimensions
in high-dimensional data analysis. We demonstrate how important it is
to consider the outlyingness of dimensions to achieve more reliable and
insightful analyses.

4. We present a methodology that moderates the temporal aspects of the
interactive visual steering of computational analysis tools. This modera-
tion is done with the guidance of human time constants that enables us
to address the perceptual capabilities of humans. Complementary to the
other contributions of this thesis which focus more on improving the way
computational tools are used interactively, this work focuses more on opti-
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mizing how computational tools operate to conform to human capabilities.
Our approach is realized through novel mechanisms such as the utiliza-
tion of online algorithms together with a suitable sampling mechanism,
the keyframed brushing technique, and the use of perceptually optimized,
animated transitions.

5. We devise methods to visually support cluster analysis, especially within
the domain of temporal data. Our approach enables analysts to both evalu-
ate and interpret the clusters that are produced within the cluster analysis
process. We utilize interactive visualizations together with measures that
provide insight on the quality of clusters. Even more specifically, we pro-
pose novel and interactive visualization techniques to analyze clusters of
temporal data. These views visualize the structural quality of temporal
cluster sets and provide visual summaries of structures over time.

Thesis Structure

This thesis is composed of two main parts. In the first part, an overview of the
research carried out within the course of this thesis is given. The second part
consists of seven papers where the contributions in the overview part is described
in detail.

The remainder of this thesis is structured as follows: In Chapter 2] the related
state of the art in interactive and visual methods for of high-dimensional data
and cluster analysis is discussed. The above listed contributions are detailed in
Chapter [3l Demonstrations of the proposed ideas and methods are presented in
Chapter 4] We discuss about the lessons learned during the thesis and conclude
with perspectives on future research in Chapter [f

The second part of the thesis includes seven papers to detail on the contribu-
tions listed above. Paper [A] and Paper [F] provide the details of the first contri-
bution above. Paper [B] Paper [C]and Paper D] details on the contributions 2, 3,
and 4 respectively. Paper [F] and Paper [G] correspond to the details of the fifth
contribution. Paper [E] and also Paper [F] discuss how our methods are used in
different application fields.



Chapter 2

State of the art: Interactive Visual Analysis
of High-dimensional Data and Clusters

his chapter discusses the state of the art in the interactive and visual meth-

ods developed for high-dimensional data and cluster analysis. We start with
a discussion on the research related to using a combination of automated and
interactive visual methods and investigate the related studies in two categories.
We then move on to discuss the research in the visual analysis of high-dimensional
data with also a focus on the consideration of local structures and outliers. Sec-
tion discusses how interactive visual methods support the cluster analysis
process. We then present how the interactivity is maintained within visual anal-
ysis frameworks.

2.1 Integrating Visual and Computational Analysis

Understanding the underlying information in the challenging datasets of nowa-
days have been in the focus of several research fields. Studies in statistics [100],
data mining [I8T], machine learning [6], and certainly in visualization [I72] have
devised methods to help analysts in extracting information from the data. While
the first three fields rely on computational power, visualization relies mainly on
the perceptual and cognitive capabilities of the human in extracting information.
Although these research activities have followed separate paths, there have been
significant studies to bring together the strengths from these fields [110} [174] [129].
Tukey [I88] led the way in integrating visualization and statistics with his work on
exploratory data analysis. Earlier research on integrating statistics [32] and data
mining [I10] with information visualization have taken Tukey’s ideas further.
This vision of integrating the best of both worlds has been a highly praised goal
in visualization research [I87],[113] 18] and led to the emergence of visual analytics
as a field on its own. Visual analytics brings together research from visualiza-
tion, data mining, data management, and human computer interaction [I13]. In
visual analytics research, the integration of automated and interactive methods
is considered to be the main mechanism to foster the construction of knowledge
in data analysis. In that respect, Keim [I11I] describes the details of a visual
analysis process, where the data, the visualization, hypotheses, and interactive
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methods are integrated to extract relevant information. In their sense-making
loop, based on the model introduced by van Wijk [I96], the analytical process is
carried out iteratively where the computational results are investigated through
interactive visualizations. Such a loop aims to provide a better understanding of
the data that will ultimately help the analyst to build new hypotheses.

There are different surveys that characterize how the integration of automated
methods and interactive visualizations are accomplished. Crouser and Chang [37]
characterize the human computer collaboration by identifying what contributions
are made to the process by the two sides. In their survey, several papers are
grouped according to these types of contributions. According to the authors,
humans contribute to the analytical processes mainly by wvisual perception, vi-
suospatial thinking, creativity and domain knowledge. On the other side, the
computer contributes by data manipulation, collection and storing, and bias-
free analysis routines. Bertini and Lalanne [I8] categorize the methods involving
data mining and visualization into three: computationally enhanced visualization,
visually enhanced mining, and integrated visualization and mining. Their cate-
gorization depends on whether it is the visualization or the automated method
that plays the major role in the analysis. In the following, we employ a simplified
categorization and discuss the related works in integrated methods depending on
the way the computational tool is utilized within the analysis: using automated
method as a standalone tool and interactive visual steering of the computation.
Kehrer et al. [106] demonstrates how statistical moments can be utilized to con-
struct and navigate between visualizations. Their approach is a demonstration
of how statistical aggregates facilitate the analysis of multi-faceted datasets.

Automated methods as a standalone tool

In this type of integration, the computational tool is used as a separate entity
either implicitly or explicitly (refer to Chapter 3| for a related discussion) within
the analysis and its inner working is not transparent to the user. In this setting,
the user interacts with the computational mechanism either through modifying
parameters or altering the data domain that the method is applied on. The re-
sults are then presented to the user through different visual encodings that are
often accompanied by interaction. There are several examples along the lines of
visual analytics that utilize such an integration. Perer and Shneiderman [144]
discuss the importance of combining computational analysis methods, in partic-
ular statistics, with visualization to improve exploratory data analysis. Their
study on a group of experts reveals that without interactive visualization, com-
putational results can become very hard to interpret. Janicke et al. [94] utilize
a two-dimensional projection method where the analysis is performed on a pro-
jected 2D space called the attribute cloud. The resulting point cloud is then used
as the medium for interaction where the user is able to brush and link the selec-
tions to other views of the data. The use cases in this work also demonstrate that
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the analysis performed at a projected space leads to successful results. Johansson
and Johansson [99] enable the user to interactively reduce the dimensionality of
a dataset with the help of quality metrics. The visually guided variable ordering
and filtering reduces the complexity of the data in a transparent manner where
the user has a control over the whole process. The authors later use this method-
ology in the analysis of high-dimensional datasets involving microbial popula-
tions [57]. Ingram et al. [92] present a system called DimStiller, where there
are a selection of data transformations that are chained together interactively to
achieve dimension reduction. The presented framework treats the computational
tools as operators that perform particular tasks on data tables. Fuchs et al. [60]
integrate methods from machine learning with interactive visual analysis to assist
the user in knowledge discovery. Oeltze et al. [I41] demonstrate how statistical
methods, such as correlation analysis and principal component analysis, are used
interactively to assist the derivation of new features in the analysis of multivariate
data. Correa et al. [36] consider the uncertainties that arise while transforming
the data. These uncertainties are integrated in the visualization to support the
interpretation of statistical analysis results. Guo et al. [76] enable the interactive
exploration of multivariate model parameters. They visualize the model space
together with the data to reveal the trends in the data. Gosink et al. [70] use a
query-driven visualization with a statistics-based framework. They utilize query
distributions to estimate trends and features.

Interactive visual steering of computations

This mode of integration constitutes of mechanisms where the analyst interacts
with the inner working of the algorithms. This is often achieved by displaying
intermediate results where the user provides guidance for the algorithm to carry
the computations further.

Although not as common as the solutions in the first category, there are sev-
eral methods that fall under this category. In a recent paper, Endret et al. [50]
describe such methods as enabling the direct manipulation for visual analytics.
They describe three levels for interaction to enable such an integration: the ma-
nipulation of spatial constraints, parameter weights and model steering. They
suggest that such a multi-level interaction facilitates the symbiotic relation be-
tween the computer and the analyst.

In MDSteer [210], an embedding is guided with user interaction leading to an
adapted multidimensional scaling of multivariate datasets. Such a mechanism
enables the analyst to steer the computational resources accordingly to areas
where more precision is needed. Endert et al. [5I] introduce observation level
interactions to assist computational analysis tools to deliver more reliable results.
May and Kohlhammer [I33] present a conceptual framework that improves the
classification of data using decision trees in an interactive manner. The results
are iteratively improved through user input. Nam and Mueller [I36] provides
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the user with an interface where a high-dimensional projection method can be
steered according to user input. In the analysis of streaming text data, Jamal et
al. [7] proposes a system that incorporates user input within the computations
on-the-fly.

2.2 Visual Analysis of High-dimensional Data

Multi-dimensional datasets, where the dimension count is a few to several dozens
approximately, have been studied widely in the visual analysis literature. Surveys
by Wong and Bergeron [211] and more recently Fuchs and Hauser [65] provide
an overview of multivariate analysis methods in visualization. The recent survey
by Kehrer and Hauser [I07] covers a wider spectrum of research and discusses
the visual analysis of multifaceted data.

Frameworks with multiple coordinated views, such as XmdvTool [202], Jig-
saw [I77] or Polaris [I78], are used quite commonly by now in visual multivariate
analysis. Weaver [203] presents a method to explore multidimensional datasets,
where the analysis is carried out by cross-filtering data from different views.

In these multiple view systems, data is visualized through 2D scatterplots,
scatterplot matrices, parallel coordinate views, or histograms. One commonly
employed interaction mechanism is the linking & brushing [14], where the user
selects (or brushes) a subset of the data through one of the views and the same
selection is then highlighted in the other views using a visualization method called
focus + context [83], A3].

Compared to all these important related works there are however only few
studies published where really high-dimensional data are analyzed. One example
is the VAR display by Yang et al. [212], where the authors represent the dimen-
sions as glyphs on a 2D projection of the dimensions. A multidimensional scaling
operation is performed on the glyphs where the distances between the dimensions
are optimally preserved in the projection.

There are methods to reduce the set of dimensions with the help of visual anal-
ysis and measures to evaluate and reduce the possible visualization space. May
et al. [I32] proposed a technique called SmartStripes where they investigated the
relations between different subsets of features and entities. Their method guides
the user in selecting suitable subsets for the analysis. Tatu et al. [I82], on the
other side employ automated methods to rank visualizations of high-dimensional
dataset. Their approach suggest users a good subset of the dimensions to start
the visual analysis analysis process.

There are few other works where a duality within the analysis proved to be
useful. In parameter space exploration [I7], the authors used two interaction
spaces, one for the parameters and the other for system output in the form of
predictions. In temporal data analysis, Andrienko et al. [9] perform the analysis
both on the spatial and the temporal domains. The analysis on two separate
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data domains is carried out in parallel by the introduction of interfaces in the
case of multi-run simulation data [109].

Performing the high-dimensional data analysis on derived attributes is a strat-
egy utilized in a number of studies. Kehrer et al. [I06] integrate statistical mo-
ments and aggregates to interactively analyze collections of multivariate datasets.
Wilkinson et al. introduced graph-theoretic scagnostics [208] to characterize the
pairwise relations on multidimensional datasets. Scagnostics are powerful mea-
sures that quantify the relations in 2D scatterplots. These measures makes it
possible for the user to reduce the visualization space considerably via filtering
non-interesting scatterplots. In a later work [209], the same authors used these
features to analyze the relations between the dimensions. Scagnostics measures
are also utilized to analyze multi-variate temporal datasets [38].

2.2.1 Visual Analysis of Structures

The structure of high-dimensional datasets and the relations between the dimen-
sions have been investigated in a few studies, also. Seo and Shneiderman devise
a selection of statistics to explore the relations between the dimensions in their
Rank-by-Feature framework [I68]. They rank 1D or 2D visualizations accord-
ing to statistical features to discover relations in the data. In their method, the
main focus is on the data items. One very interesting work is the visual hier-
archical dimension reduction method by Yang et al. [2I3]. The authors build
a hierarchy of the dimensions that is than used to create representatives and
construct lower-dimensional spaces. In a similar work, Huang et al. [90] utilized
the derived dimensions together with the original dimensions. The authors ob-
served the output of several dimension reduction methods with a special focus
on how they correlate with certain characteristics of the original dimensions. In
an related paper from the analytical chemistry field by Ivosev et al. [93], the
authors group variables depending on their inter-correlations and utilize them in
dimension reduction and visualization. Their method is applied only to principal
component analysis, however it demonstrates the benefit from a strategy that
groups variables together.

2.2.2 Visual Analysis of Outliers

Outliers have been in the focus of research in data mining and statistics fields [88].
However, there is a limited number of studies in visual analysis. One of the
most important papers that specifically address outliers in visualization is by
Novotny and Hauser [140] where they visually separate trends and outliers in
their extended version of a parallel coordinate plot. The trends in the data is
represented as context and the outliers are separated in the visualization. This
work demonstrates how visual analysis can benefit from the special treatment of
outliers. Another important study on outlier analysis is by Kehrer et al. [106],
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where the authors can identify outlying observations through the exploration of
multi-faceted data via aggregated statistics. In a recent study, Kandogan [101]
discusses how trends and outliers can be detected in his visualization level ap-
proach. His image-based technique reveals outliers in a 2D visualization where
the method automatically annotates the findings to make them apparent to the
analyst. Liao et al. [126] introduced a visually-guided active learning mechanism
to detect anomalies in GPS datasets. In all of these studies, however, the focus of
the methods is on observations rather than on the dimensions. We have not come
across any study where the outlyingness of dimensions has been investigated.

2.3 Visually Supported Cluster Analysis

Interactive techniques have proven to aid analysts in refining and building clus-
tering results. Sprenger et al. [I76] introduced a visually supported hierarchical
clustering algorithm. Their visual clustering approach involves a two-stage pro-
cedure — a hierarchical clustering is followed by a visualization that uses blob
objects to reveal cluster shapes. Rinzivillo et al. [I54] use a visual technique
called progressive clustering where the clustering is done using different distance
functions in consecutive steps. The progressive clustering technique provides a
convenient mechanism where potentially interesting portions of data are selected
to direct the algorithms. Schreck et al. [164] propose a framework to interactively
monitor and control Kohonen maps to cluster trajectory data. The authors state
the importance of integrating the expert within the clustering process in achiev-
ing good results. Fua et al. [64] propose a technique based on parallel coordinates,
which displays the required level of detail on the dataset using hierarchical clus-
tering results. Another method for structure discovery in large datasets by means
of clustering results and parallel coordinates is presented by Johansson et al. [98].
The authors exploit clusterings and high-precision textures to enhance apparent
structures in parallel coordinates thus avoiding the cluttering issue.

Visualization has generally served as the final step of cluster analysis where it
plays a critical role in enhancing the interpretation of clusters by enabling com-
parison and evaluation. gCluto [I48] is an interactive clustering and visualization
system where the authors incorporate a wide range of clustering algorithms. This
system enables the user to store different clusterings and visualize the results in a
matrix or mountain visualization. Rubel et al. [I59] introduce a framework called
PointCloudXplore that integrates clustering and visualization for the analysis of
a dataset that has a spatial mapping.

In Hierarchical Clustering Explorer [167], Seo and Shneiderman describe the
use of an interactive dendogram coupled with a colored heatmap to represent
clustering information within a coordinated multiple view system. The authors
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enable the comparison of two clusters through a specialized comparison view. Lex
et al. introduce MatchMaker [123], where they visualize and compare multiple
groups of dimensions. In their work, they provide a use-case where they use their
methods to compare clusters. In the follow-up of this work, StratomeX [124],
they demonstrate how such a visual encoding facilitates the analysis of cancer
subtypes.

Sharko et al. employed projections of data items on a vectorized radial visu-
alizations to investigate several clustering results. Their method helps analysts
to validate particular results when several clusterings of the same dataset exist.
Bezdek and Hathaway [I9] developed an interactive dissimilarity matrix that is
extended by Siirtola [I75] to analyze clustering results at different similarity lev-
els. Specialized heat maps called cluster stability matrices are utilized by Sharko
et al. [I70] to visually determine most ’stable’ clusters in clustering results. In the
MultiClusterTree [195], Long and Linsen discuss how clusterings are utilized to
analyze multi-dimensional data. A radial layout that is linked with several other
views are utilized to explore hierarchical clusters. In the software visualization
domain, Telea and Auber [I85] represent the changes in code structures using a
flow layout where they identify steady code blocks and when splits occur in the
code of a software.

Analyzing temporal clusters

Wijk and Selow [198] presented one of the earliest works on cluster-based visuali-
zation of temporal data. The authors cluster time-series data and visualize the
results on a calendar. In a paper by Andrienko et al. [10], the authors discuss
how they perform the interactive clustering of trajectory data and they present a
user-driven clustering methodology. They use graphical summaries of trajectory
clusters to indicate the number of cluster members. These summaries provide
valuable information when the analyst is interested in changes of the cluster sizes.

Dynamically evolving clusters, in the domain of molecular dynamics, are ana-
lyzed through interactive visual tools by Grottel et al. [74]. The authors describe
flow groups and a schematic view that display cluster evolution over time. These
groups are observed to validate the quality of clustering results.

Self organizing maps (SOM) have been used to visualize the temporal cluster
changes by Denny et al. [4I]. The authors create a set of SOMs for different
time instances over time and compare these set of maps to explore structural
changes in the cluster sets. However, this solution is limited to depicting only
cluster-cluster relations. Another work where self organizing maps are utilized is
by Andrienko et al. [9]. They propose the interactive utilization of SOMs that are
integrated in a visual analysis framework. Their solution aims to discover spa-
tiotemporal relations by analyzing the temporal evolution of a spatial situation
and the distribution of temporal changes sequentially.
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2.4 Maintaining the pace of interactivity in
integrated systems

The integration of computational methods within interactive systems brings the
challenge to maintain the pace of interactivity at an acceptable level, i.e., the user
should not wait a very long time for the computational results to be computed.
According to Shneiderman [I73], interactive mechanisms need to give immediate
feedback to user inputs within certain temporal limitations. One mechanism
to maintain the interactivity of such systems is to improve the performance of
the computationally heavy tasks. Along this line, Chan et al. [27] made use
of predictive caching to improve the interaction with massive time series data.
Piringer et al. [146] present a multi-threading architecture where the visualization
and the background operations are carried out in separated threads to ensure
interactive response. Fekete and Plaisant [55] focus on improving the scalability
of visualization methods by incorporating GPU-supported computations.

Rosenbaum and Schumann [I56] suggest a progressive refinement framework
in order to achieve a scalable system in terms of response times, visual clutter,
and available resources. The authors discuss that developing specific solutions
that employ progressive refinement approaches still remains as an open challenge.
Ahmed and Weaver [3] present an interactive cluster exploration system. The
authors display approximate clustering results to maintain smoothly running
interactivity. Similarly, Fisher et al. [61] present how an incremental sampling
strategy can be employed in a database query system. The authors also perform
a user study with analysts where they find out that their incremental approach
enables them to give certain decisions early and update/remove their queries
without waiting for the results to complete. In a recent work, Choo and Park [31]
discuss the challenges brought up by very large datasets along the same lines. The
authors suggest methods on how the responsiveness of systems can be improved
through using less precision, using iterative refinement for the representation of
results.



Chapter 3

Integrating Computational Methods in
Interactive Visual Analysis

Both automated and visual analysis methods have exactly the same goal: help-
ing the analyst to build a better understanding of the data. Automated com-
putational analysis tools achieve this by performing tasks such as summarizing
information, quantifying relations, finding structures, and classifying elements
in datasets. However, due to several factors introduced in Chapter [} analytical
procedures that utilize these automated approaches alone suffer from certain lim-
itations and pitfalls. On the other side, visual analysis methods need the speed
and precision of automated approaches to carry on the complicated tasks that
are listed above. This thesis aims to join the strengths of both interactive visual
and automated methods and focuses on the integration of computational tools
in the interactive and visual analysis of data to help analysts in gaining insight
into complex datasets.

In this thesis, the integration of computational methods is achieved at two
different levels by utilizing their output either explicitly or implicitly. We refer to
the set of available automated methods as the computational toolbox. In the ex-
plicit use of computational tools, the output of the tool is treated as an extension
of the raw data and is subject to the interactive visual analysis process together
with the actual data. An example of such an integration is applying dimension
reduction to project a high-dimensional dataset to a 2D space and visualizing
the result within the visual analysis. The implicit use of computational tools
on the other side, involves the use of computed measures to enhance interactive
and visual methods. This approach uses the computational output inherently
rather than making it explicitly available for the analysis. An example of such
an implicit use can be coloring the data points in a scatterplot according to a
computed measure, f.i., how central they are in the data distribution.

This approach to utilize computational tools at two levels facilitates our goal to
tightly integrate automated methods with interactive visualizations. Figure [3.1
provides an overview of these two levels. Notice that, the interactive visual
methods together with the implicitly used computational tools operate on the
set of raw and derived data, i.e., the data domain. This data domain is extended
iteratively with the use of computational tools explicitly. We follow a strategy
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Figure 3.1: Integrating computational tools and interactive visual methods. One mech-
anism to use computational tools is to do it explicitly and extend the data domain
with their output for further analysis. The implicit use of the computational toolbox
enhances the interactive visual analysis approaches. The interactive visualizations are
also used to determine specifications for the automated methods, such as interactively
determining the data domain or parameters.

to make the output of several runs of computational tools available throughout
the analysis together with the raw data. Our two-level approach enables the
analyst to observe and interact with the results of particular computational tools
in relation to the actual data. One important aspect to pinpoint here is that the
explicit use of computationa