# Introduction to Illustrative Flow Visualization

Andrea Brambilla (University of Bergen) Robert Carnecky (ETH Zurich)





#### Which image would you use for navigation?





#### Images from Google Maps

# **Illustrative Visualization**

### Inspired artists and illustrators

## • ... but interactive

## Show relevant information...

## ...using visual abstractions







# **Illustrative Visual Abstraction**

### Perceptual Effectiveness



#### **Focus Emphasis**



#### Visibility Management

Sem ETH



#### Visual Explanation



A. Brambilla, R. Carnecky

### **Flow Data Representations**





**Raw Data** 



Images generated with SimVis

oem ETH

#### A. Brambilla, R. Carnecky

# Challenges in flow visualization Seg

- Flow data is *multivariate* → What to show? How?
- Flow data is dense  $\rightarrow$  Cluttering and occlusion
- Flow data is *unsteady*  $\rightarrow$  Temporal evolution hidden



# IllustraFlowVis Classification

Visualization user

Data representation

Visualization needs



Technical Vis details 💥



2-axis classification based on user knowledge:



# **Example: Basic Concepts**





Classic hedgehog vis

- Inefficient
- Hard to grasp



Data Painting and Texture Advection
Display multiple variables at once
Convey additional information





# Example: Occlusion & Cluttering Sem ETH

Simple trasparencyDetails are hidden

Depth-ordering issues



Smart shading
Uncover small details
Improve spatial perception

[CFM\*XX]







CFM\*XX

# Example: Advanced Techniques Sem ETH





Storytelling
Expressive presentation
Multiple points of view
Temporal Implosion
Data from many timestep
Temporal evolution of flow





- IllustraFlow Vis enables flow analysis at different visual abstraction levels:
  - Make flow data more understandable
  - Expose hidden aspects of flow data
- Choosing the right technique is easy:
  - What is the current **flow data representation**?
  - What visual enhancements are needed?
- What should we expect?
  - IllustraFlow Vis based on semantic aspects and physical properties of the flow phenomena
  - Close collaboration between visualization experts and application experts



# Thanks for your attention! Questions?

- Based on: BRAMBILLA A., CARNECKY R., PEIKERT R., VIOLA I., HAUSER H.: Illustrative Flow Visualization: State of the Art, Trends and Challenges. To appear in *Eurographics* 2012 State-of-the-Art Reports (Cagliari, Italy, 2012)
- The project SemSeg acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 226042.

andrea.brambilla@uib.no - crobi@inf.ethz.ch

A. Brambilla, R. Carnecky

### References



[AWM10] AKIBA H., WANG C., MA K.-L.: Aniviz: A template-based animation tool for volume visualization. *IEEE Computer Graphics and Applications* 30, 5 (sept.-oct. 2010), 61–71. 7, 14

[BKKW08] BURGER K., KONDRATIEVA P., KRUGER J., WESTERMANN R.: Importance-driven particle techniques for flow visualization. In *Proc. of the IEEE Pacific Visualization Symposium. PacificVis* '08 (mar. 2008), pp. 71–78. 7, 14, 15

[CFM\*XX] CARNECKY R., FUCHS R., MEHL S., JANG Y., PEIKERT R.: Smart transparency for illustrative visualization of complex flow surfaces. *Unpublished*.

[CSC07] CORREA C., SILVER D., CHEN M.: Illustrative deformation for data exploration. *IEEE Transactions on Visualization and Computer Graphics* 13, 6 (nov.-dec. 2007), 1320–1327.7, 12

[FBTW10] FERSTL F., BURGER K., THEISEL H., WESTERMANN R.: Interactive separating streak surfaces. *IEEE Transactions on Visualization and Computer Graphics 16*, 6 (nov.-dec. 2010), 1569– 1577. 7, 13

[HMCM10] HSU W.-H., MEI J., CORREA C., MA K.-L.: Depicting time evolving flow with illustrative visualization techniques. In *Arts and Technology, vol. 30 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and*  *Telecommunications Engineering.* Springer Berlin Heidelberg, 2010, pp. 136–147.7, 11

[KML99] KIRBY R., MARMANIS H., LAIDLAW D.: Visualizing multivalued data from 2D incompressible flows using concepts from painting. In *Proc. of IEEE Visualization '99* (Los Alamitos, CA, USA), VIS '99, IEEE Computer Society Press, pp. 333–340. 6, 7, 8

[PBL04] PARK S., BUDGE B., LINSEN L., HAMANN B., JOY K.: Multi-dimensional transfer functions for interactive 3d flow visualization. In *Proc. of the 12th Pacific Conference on Computer Graphics and Applications* (oct. 2004), pp. 177–185. 6, 7

[SGS05] STOLL C., GUMHOLD S., SEIDEL H.-P.: Visualization with stylized line primitives. In *Proc. of IEEE Visualization 2005* (oct. 2005), pp. 695–702. 7, 8

[vW02] VAN WIJK J.: Image based flow visualization. In Proc. of the 29th Int'l Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH 2002) (New York, NY, USA, 2002), SIGGRAPH '02, ACM, pp. 745–754.7