Visualizing the Long-term Behavior of 3D Fluid Flows

Andrea Brambilla

University of Bergen (Norway)

Introduction

• My supervisors

Helwig Hauser (Univ of Bergen)

Ivan Viola (TU Wien) Øyvind Andreassen (Norwegian Defence Research Council)

Fluid Flows

Fluid Flows

Multiple points-of-view

- Local
 - Turbulence
 - Shock waves
 - .
- Semi-global
 - Transport phenomena
 - Particle trajectories
 - .
- Global
 - VFT & LCS
 - Ensemble analysis

•

Multiple points-of-view

Helgeland et al. '04

- Local
 - Turbulence
 - Shock waves
 - .
- Semi-global
 - Transport phenomena
 - Particle trajectories
- Global
 - VFT & LCS
 - Ensemble analysis

•

Integral structures

Challenges

- Selection / Placement of seeding curves
- Cluttering and occlusion
- Amount of information conveyed
- Quantification of flow properties

Projects

Seeding(a)(b) Visibility(b)(c) Quantification(b)(c)

Projects

urbine

ft powe 01 MW

Seeding...(a). Visibility. Expressiveness...(a). (C) Quantification.(b)(c)

Andrea Brambilla

Integral Surface Placement

- THE REPAIR
- How can we define a proper seeding structure?
 - Use a line segment -> 6 degrees of freedom
 - Use an arbitrary curve -> ... a lot
 - Seed multiple surfaces -> even more!

• Goal: define a semi-automatic seeding strategy s.t.:

- Handle multiple surfaces
- Captures the most prominent aspects of the flow
- Each surface capture a single aspect of the flow

Multiple Aspects of a Flow

Multiple Aspects of a Flow

Placement Pipeline

Dissimilarity and MDS

- Dissimilarity given by the Hausdorff distance
 - Expensive, so compute it on the GPU
 - Other dissimilarity measures can be used

- Multi Dimensional Scaling: embed points in R^N according to their reciprocal similarity
- Computed on the GPU using CFMDS (Park et al '12)

Derivatives and Seeding

• Each point P = (u, v) is mapped by the MDS to a point $X = (x_0, x_1, ..., x_N)$ in the embedding space

- The derivative J = dX / dP is a Nx2 matrix
- We compute the eigendecomposition of $J^T J$
- Eigenvectors are the directions of max/min similarity
- We use tensor lines of the min eigenvector field as seeding curves

Results

Andrea Brambilla

Projects

Seeding(a) Visibility(b) . Expressiveness(a)(c) Quantification(b)(c)

Andrea Brambilla

Integral Surface Analysis

- NVERSIA PS BEFREE GEN
- We want to investigate the long-term flow behavior
- We adopted (families of) integral surfaces as a tool

• Now we aim at easing their analysis

Integral Surface Analysis

- Surfaces can have intricate shapes
 - Analysis of one surface at a time
 - Extensive user interaction / manipulation
 - Flow properties not easily conveyed
- We take advantage of surface reformation
- Ad-hoc visualizations in the reformed space

Surface Reformation

- As-Rigid-As-Possible flattening (Liu et al. '08)
- Maps surface points $\mathbf{X} = (x, y, z)$ to points $\mathbf{P} = (u, v)$ in the 2D reformed space
- The original shape should be still conveyed!

- Compute the matrix **J** = d**X** / d**P**
- Compute the eigendecomposition of $J^T J$

Flow Attributes on Surfaces

NO BRENCE NO

 $\mathbf{S}\psi = (\mathbf{I} - \mathbf{n}\mathbf{n}^{T})\mathbf{S}(\mathbf{I} - \mathbf{n}\mathbf{n}^{T})^{T}$

 $\mathbf{S}_2 = \mathbf{J}^{-1} \mathbf{S}_{\psi} \mathbf{J}$

- Scalar attributes can be directly mapped to colors
- Vectors and tensors needs to:
 - be projected on the surface
 - take flattening into account

• Size <-> $\| S_{\psi} \|$ Color <-> $\| S_{\psi} \| / \| S \|$

Families of Time Surfaces

Families of Time Surfaces

- Alignment by least square optimization
- Color & transparency depending on scalar attribute

Multiple Surface Families

Multiple Surface Families

Multiple Surface Families

Projects

Seeding(a) Visibility(b) ... Expressiveness ...(a)(c) Quantification(b) ...(c)

Application Scenarios

Andrea Brambilla

Sankey Diagrams

- Representation of a weighted graph
- Width proportional to the flow quantity

Putting Things together

Andrea Brambilla

Spatial Structure

Charles Joseph Minard, Tableaux Graphiques et Cartes Figuratives de M. Minard, 1845-1869, a portfolio of his work held by the Bibliothèque de l'École Nationale des Ponts et Chaussées, Paris.

Final Remarks

- Analyzing the long-term behavior of fluid flows is challenging
- We have made the task easier, wrt Seeding, Visibility, Expressiveness, Quantification
- There is still a lot to do!
 - Single approach that solves all the issues
 - Integration of different analysis tools
 - Multiple spatial scales
 - •

Acknowledgements

- The Institute of Computer Graphics and Algorithms, TU Wien
- Helwig Hauser
- Ivan Viola
- Øyvind Andreassen
- Visualization Group in Bergen

- Datasets:
 - AVL Gmbh (Graz)
 - Cardiovascular MRI Group, University Medical Center (Freiburg)
 - Tino Weinkauf
 - GexCon AS (Bergen)