





■ Given some data, e.g., ■ a (large) bunch of time series, ■ some (larger) tables of numbers (usually multiple colums), ■ spatiotemporal data that is multivariate (like here!), ■ etc. (yes, it's really that general!), ■ IVA is ■ a flexible exploration & analysis methodology ■ that utilizes a variety of different views on the data ■ and feature extraction (interactively & computationally) ■ IVA enables ■ interactive information drill-down, while navigating between overview & detail, seeing the unexpected, e.g., for hypothesis generation, steering the analysis

■ IVA bridges the gap between the data & the user

Level 1: KISS-principle IVA

- Base-level IVA (solves many problems, already!)
 - bring up at least two different views on the data
 - allow to mark up interesting data parts (brushing)
 - utilize focus+context visualization to highlight the user selection consistently(!) in all views (linking)
- Example (interactively?)...
- With base-level IVA, you can already do
 - feature localization brush high temperatures in a histogram, for ex., and see where they are in spacetime
 - local investigation for ex., select from spacetime and see how attributes are there (compared to all the domain)
 - multivariate analysis brushing vorticity values and studying related pressure values (selection compared to all)

Getting more out of IVA (advanced IVA)

evel 3

- Starting from base-level IVA,
 - we enable the identification of complex features, for ex., by exploiting a feature definition language
 - we realize advanced brushing schemes, e.g., by realizing a similarity brush
 - we facilitate interactive attribute derivation, e.g., by means of a formula editor
 - we integrate statistics/ML on demand, e.g., by linking to R
- With advanced IVA.
 - we drill deeper (data→selections→features→...)
 - we read between the lines (semantic relations)
 - answer complex questions about the data

Flow Simulation Data and IVA

- Data from computational simulation, e.g., CFD, is
- usually given on (large & interesting) spatial grids
 - (often also time-dependent ← special focus here!)
 often multivariate in terms of the simulated values
 - based on a continuous model
- Considering such data in the **d**(**x**) form
 - with d being the dependent variables (the simulated variates), for ex., velocities, pressure, temperature, ...
 - and x representing the independent variables, i.e., the domain of the data (usually space and time)
- - we relate x and d (feature localization, local investigation) as well as d_i and d_j (multivariate analysis)
 - we consider δ(d), i.e., derived "views" on the data
 - either explicitly (by attribute derivation)
 - or implicitly (by advanced interaction mechanisms)

Derived "Views" (higher-level IVA) - local

- Local [vs. non-local (semi-local, global)] derivations
- considering derivatives, e.g., wrt. space/time, incl.
 - temporal derivatives d' (dd/dt) // Eularian view
 - spatial derivatives $\nabla \mathbf{d}_i \left(\mathbf{dd}_i / \mathbf{dx} \right)$, in particular also the spatial velocity gradient $\mathbf{J} = \nabla \mathbf{v} \left(\mathbf{dv} / \mathbf{dx} \right)$
 - vector calculus based on —"—, inc.
 - divergence div $\mathbf{v}(\nabla \cdot \mathbf{v})$ rate of strain $\mathbf{S} = (\mathbf{J} + \mathbf{J}_{\underline{}}^{\mathsf{T}})/2$
 - curl (vorticity) ω ($\nabla \times \mathbf{v}$) rate of rotation $\Omega = (\mathbf{J} \mathbf{J}^{\mathsf{T}})/2$
 - local feature detectors, e.g., based on —"—[Bürger et al., 2007]
 - vorticity magnitude | ω | [Strawn et al., 1998]
 - normalized helicity [Levy et al., 1990]
 - **Hunt's Q** [Hunt et al., 1988] $Q = \|\Omega\|^2 \|\mathbf{S}\|^2$
 - lacktriangle kinematic vorticity number [Truesdell, 54] $N_k = \|\Omega\| \, / \, \|\mathbf{S}\|$
 - $\blacksquare \lambda_2$ according to Jeong & Hussain (1995) $\lambda_2(\Omega^2 + S^2)$

Derived "Views" (higher-level IVA) - non-loca

- Non-local (semi-local, global) derivations
 - local neighborhoods $P_r(x) = \{ y \mid |x-y| < r \}$
 - local neighborhood statistics [Angelelli et al., 2011], like also moving averages, for ex
 - stream-/streak-/pathlet statistics (e.g., averages)
 - local normalization
 - etc
 - m global methods
 - reconstructions from scale-space representation, e.g., POD-based reconstruction [Pobitzer et al., 2011]

 - topology-based approaches, e.g., uncertain vector field topology [Otto et al., 2010&2011]
 - integration-based approaches,
 - e.g., FTLE computation











