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Figure 1: Honeycomb plots (b) combine (a) scatter plots and (c) heat maps using per-tile densities. Through shading, ambient occlusion,
and an implicit point-distribution encoding, the observer can explore data features that cannot be captured by either of the techniques alone.

Abstract
Aggregation through binning is a commonly used technique for visualizing large, dense, and overplotted two-dimensional data
sets. However, aggregation can hide nuanced data-distribution features and complicates the display of multiple data-dependent
variables, since color mapping is the primary means of encoding. In this paper, we present novel techniques for enhancing
hexplots with spatialization cues while avoiding common disadvantages of three-dimensional visualizations. In particular, we
focus on techniques relying on preattentive features that exploit shading and shape cues to emphasize relative value differences.
Furthermore, we introduce a novel visual encoding that conveys information about the data distributions or trends within
individual tiles. Based on multiple usage examples from different domains and real-world scenarios, we generate expressive
visualizations that increase the information content of classic hexplots and validate their effectiveness in a user study.

CCS Concepts
• Human-centered computing → Visualization techniques; Visualization theory, concepts and paradigms;

1. Introduction

Hexplots represent a form of spatial aggregation usually applied to
a large number of two-dimensional points, making them resistant
to overplotting. They rely on a subdivision of the plane by a regular
space-filling grid of hexagonal polygons. However, Cleveland and
McGill [CM85] emphasize that the visual system may fail to detect
quantitative information from geometric aspects of a visualization.
For example, aggregation comes at the expense of the perceptibility
of individual points, making outliers invisible [Dow14], and poten-
tially obscures trends or clusters. Additionally, being able to distin-
guish between tile colors with at least a just-noticeable difference
(JND) can be essential, especially when color describes quantita-
tive data properties [Sto12; SAS14]. We, therefore, assessed po-

tential disadvantages of current techniques by applying algebraic
visualization design (AVD) [KS14]. Our strategy was inspired by
McNutt [McN21], who highlights the advantages of this human
operable and interpretable systematic framework. AVD analyzes
how data changes affect the resulting visualization. Input for hon-
eycomb plots are tabular 2D point coordinates. If the same data
is displayed differently, this is referred to as a hallucinator. When
changes in the data remain invisible, this is referred to as a confuser.
Although both flaws cannot be avoided completely, they should be
minimized. Therefore, we initially noted the following confusers:
C1: Point-data visualizations often assume equal density ranges.

The underlying points are either sparse (scatter plots) or dense
(density estimations and aggregations), making techniques
reach their limits when data exhibit both simultaneously.
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C2: Color-coded tiles containing a similar number of points may
be perceived as equally dense, which would falsely corre-
spond to the same visualization of actually different data.

C3: Heat maps only encode the quantity of aggregated points, so
that uniform distributions within tiles cannot be distinguished
from clusters or trends if their numbers of points match.

C4: Heat maps prevent the analysis of sparse features or outliers,
allowing their position or arrangement to change although the
aggregation, i.e., tile color, remains the same.

These confusers highlight the need for (C1) a novel hybrid visual-
ization technique that preserves features of highly uneven distribu-
tions. Our goal was (C2) a visual encoding that overcomes prob-
lems with color coding of the first moment of statistics, i.e., the
mean value describing average density as color, but also to (C3)
capture statistical moments of higher order describing shape pa-
rameters, while (C4) strengthening the embedding of underlying
points. Our contribution can be summarized as follows:

• An interpretation of hexagonal tiles as relief mosaic where am-
bient occlusion serves as a subtle aid to perceive nuanced color
differences between neighboring discrete tiles.

• An extension of the visually encoded information content by in-
corporating the regression plane of the underlying densities per
bin in the form of a per-tile diamond cut.

• A hybrid approach that blends point data with colored hexagonal
tiles corresponding to an amber inclusions metaphor, enabling an
exploration of trends and clusters also in sparse regions.

• A quantitative user study consisting of four typical hexplot tasks
in which we compare our encodings to classic heat maps.

In addition to the listed contributions, we developed an efficient
hexagonal aggregation algorithm for two-dimensional data points,
based on arbitrary grid sizes, in real time on the GPU.

2. Related Work

Hexagonal binning as an aggregation technique was first introduced
by Carr et al. [CLNL87] in 1987. They suggest the use of glyphs in
the shape of hexagons whose size encodes the total number of data
points within. Another technique called sunflower plots [CM84]
uses flower-like glyphs in which petals represent aggregated points.
A hybrid approach that visualizes individual data points as well as
density estimations through binning are variable resolution bivari-
ate plots, so-called varebi plots [HMS97]. Over the years, a variety
of related techniques spread under similar names: hexagon plots or
hexplots, hexbins, hexagonal binning plots, hexagonal tiles, hexbin
maps, hexagonal gridded maps, and hexagonal heatmaps.

For statistical summaries in cartography, Carr et al. [COW92]
emphasize the advantages of hexagon mosaic maps, i.e., hexagon
grid-cell choropleth maps, extendable by information layers
[PMAM16]. Battersby et al. [BSF16] investigate projection dis-
tortions of such grid structures resulting in either differently sized
geographic areas as the basis for binning, or bin grid overlays of
varying size. Example scenarios for spatio-temporal cartographic
data contain the analysis of criminal activity [RRM15] or visitor
flows in amusement parks when solving the VAST 2015 Mini-
Challenge (MC1) [CGH*15]. Another recent approach [WK20]

focuses on multivariate game metrics using hexbin maps, Wur-
man dots [PW66], and arrowheads as direction indicators. To ex-
plore data attributes at specific (geospatial) locations, so-called at-
tribute blocks [Mil07], i.e., dynamically configurable regular ar-
rays of "screen door" lenses, can be used. Possible alternatives are
hexagonal cells as windows or magic lenses enabling the compara-
tive visualization of multiple data sets [MHG10]. Other techniques
[HKIH07] evaluate blending and weaving to encode multivariate
information by color. Established guidelines derived from explor-
ing the visual design space of multi-class point data [HCSG18]
and different representations using similar approaches [JVDF19]
evaluate blending, weaving, majority-based coloring, embedding
of pie charts or bar charts as glyphs, etc. Furthermore, user stud-
ies analyzing user performance when comparing multiple heat
maps [KAB*20] show that juxtaposed 2D heat maps work best
for overview tasks, whereas stacked 3D heat maps (explored us-
ing stereo vision) are superior when reading and comparing single
values. Although the two-dimensionality of honeycomb plots pre-
vents occlusions and perceptual distortions, our spatialization cues
could also be mapped to 3D geometry or digitally fabricated.

3. Honeycomb Plots

Hexplots, in contrast to choropleth maps [Dup26], enable a fairer
spatial comparison of aggregated values since differently sized
landmasses do not affect their interpretation. Although well suited
for this, hexplots also limit the parameter space for additional vi-
sual encodings since position, area, color, orientation, and shape,
as discussed by Munzner [Mun15], are already occupied. We,
therefore, investigated potential spatialization cues, i.e., three-
dimensional shape cues, applicable to 2D visualizations, prevent-
ing disadvantages of 3D visualizations such as viewpoint choice
and view-dependent occlusion. Spatialization cues have a long tra-
dition, for example, cushion treemaps [vWvdW99] and shaded
Voronoi diagrams [TW01], enridged contour maps [vWT01],
sunspot plots [TBSB20], and line weaver [TB21]. In all cases, lu-
minance from shading expands the design space.

Perception studies analyze lightness constancy, i.e., if color and
shadow can be separated by the human visual system. Szafir et
al. [SSG16] analyze molecular visualizations and confirm that users
can assign shadowed colors to corresponding unshadowed colors.
Langer and Bülthoff [LB01] highlight that viewers assume light
from top left and that a (convex) object is likely observed from
above. Irani et al. [ISS04; ISS06] also showed that users prefer
shaded visualizations which help them understand structures.

3.1. Relief Mosaic

Hexplots are well suited to spatially aggregate data points. How-
ever, in cases where minimal color differences are not merely at-
tributable to falling within a margin of error, discrepancies between
adjacent tiles are difficult to see. Inspired by locally adjusting heat
maps [ZZW*21], we apply ambient occlusion (AO), i.e., encoding
accessibility of a surface point [ZIK98], to spatial density which is
represented by the tile height. We exploit the advantages of a regu-
lar hexagonal grid and calculate AO analytically which is, in such
a well-defined scenario, most precise and interactive in real time.
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As known from literature [Dut21; AMGA12], the AO integral of a
surface point x occluded by a rectangle Q, defined by four corner
points q1,2,3,4, is calculated as follows:
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where vi = qi −x corresponds to vectors pointing from x to the cor-
ner points of Q, and N is the surface normal of x. According to
Quilez [Qui21], the double integral of the occluding surface can be
reduced to a line integral of its perimeter, whose individual sides
projected on the unit hemisphere correspond to the angle of the arc
itself, which can be computed as the inverse cosine of two con-
secutive corner points. The contribution of the occlusion is then
calculated as dot product between the surface normal at the point
of occlusion and the normal of the triangle connecting the two cor-
ner points to the surface point. Unlike shadow mapping [Wil78],
where a light source casts shadows, AO emphasizes the accessibil-
ity of a tile to its immediate neighbors. A point x can, therefore,
only be occluded by a maximum of six rectangles corresponding to
the adjacent side walls of potentially higher tiles. The total AO can,
hence, be calculated as the sum of six individual occlusions:
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The summarized AO factor can then be used as per-pixel dark-
ening factor when coloring tiles. Figure 2 shows how AO can help
understanding the spatial interpretation of scalars as a height field.

a b

Figure 2: Illustrations of how AO emphasizes structures using a
viewpoint from (a) top-down and (b) "the side", including two red
rectangular side walls that cause such an exemplary tile darkening.

Figure 4(a-c) shows a synthetic example of a density increase
from left to right, observable in (a) the scatter plot and (b) the heat
map. The vertical trend in the center, however, can only be empha-
sized by (c) AO. Such an augmentation can be beneficial in two
ways: first, to highlight color differences in continuous heat maps,
and second, to visually distinguish more nuances than the number
of colors that is available in a discrete heat map. For example, car-
tographers rarely use more than seven colors on choropleth maps
[HB03]. Using a relief mosaic also shows that explaining the se-
mantics of a heat map, i.e., which colors correspond to the max-
imum/minimum density, is now preattentive as it can be derived
from the topological structure. Since darkening, however, might not
always distort colors favorably, we conducted a user study (see Sec-
tion 7) to evaluate its impact. We chose viridis as the heat map for

all our visualizations, as it corresponds to the default in many stan-
dard tools and scientific environments, such as the python package
matplotlib or R for statistical computing and graphics. It is per-
ceptually uniform even when printed in black-and-white and was
developed to improve readability for users with color deficiency or
color blindness. Since none of our techniques focuses on absolute
numbers, the color legend is only visible in the teaser Figure 1.

3.2. Diamond Cut

Classic hexplots rely on flat tiles, leading to the intuitive assump-
tions that densities within tiles are either uniform or neglectable.
However, non-uniformly distributed points may form trends that
are relevant for analysis. Inspired by hexagonally shaped glyphs
[CLNL87] and Phoenixmaps [ZLG*21] as an abstraction of data
points, we introduce a diamond cut metaphor. Similar to how a
rough diamond is cut into a brilliant, we cut hexagonal pyramids
so that their cut surface corresponds to the regression plane of the
contained points, i.e., a fit plane that best approximates the under-
lying density distribution. This requires the computation of six in-
tersections, one of which called p′ can be calculated as follows:

p′ = l0 + l
(p0 − l0) ·N

l ·N with l =
l0 − pi

∥ l0 − pi ∥
(3)

wherein l0 is the pyramid top, p0 is the center point of a tile at the
height of the average density, N is the normal, i.e., the regression
plane orientation, and l is the normalized direction pointing from
one of the six hexagonal grid corner points pi to the pyramid top
l0. An illustration of this calculation is shown in Figure 3.

Figure 3: Pyramid intersections with planes (tilted to the left/right
and horizontally) that best approximate the underlying density.

These slopes can be interpreted as diamonds pointing towards
the steepest descent. The smaller and narrower a glyph gets and the
more it is attracted to one side of the hexagon, i.e., the more it is
repelled from another side, the steeper and more extreme the trend.
An illustration of this is shown in Figure 5. Alternatively, invert-
ing the pyramids, i.e., using concave cavities rather than convex
spikes, without changing the orientation of the regression planes
would instead produce glyphs reminiscent of radar charts where
the attraction in one direction points towards the steepest ascent.

Figure 4(d-f) shows a data set containing three regions with dif-
ferent densities visible using (e) a heat map, but not in (d) the scatter
plot. Using (f) a diamond cut, the regression plane within the tile
can be inferred from the shape, shading, and outline of the trun-
cated pyramid. To evaluate whether users understand this concept
within 15-20 minutes, we conducted a user study (see Section 7).
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