Hypothesis Generation by Interactive Visual Exploration of Heterogeneous Medical Data

Cagatay Turkay, Arvid Lundervold, Astri Johansen Lundervold, Helwig Hauser

What you will hear today?

- Interactive & visual methods in data analysis
 - Dual analysis approach
- Deal with complex datasets
 - Many variables
 - Heterogeneous
 - Several modalities
- Generating hypotheses interactively
- Analyze medical data as a multidisciplinary group

Problem Domain: Cognitive Aging Study Analysis

- Carried out by neuropsychology & biomedicine experts
- Analyze relations between brain segments vs. cognitive decline
- Heterogeneous: image statistics + test scores + patient data
 - Imaging modalities, MRI, DTI, fMRI
 - Neuropsychological examination: IQ, memory function, and attention/executive function
- Longitudinal study, 3 waves (2005, 2009, 2012)
 - ~100 participants

Cognitive Aging Study Data

MR Imaging

Anatomical Segmentation

- -- **45** brain **segments**, e.g., cerebellum, white matter, ...
- **-- 7 features** for each segment e.g., *number of voxels* , *volume*, ...

2D data table

82 X 373

Personal/Clinical Data

Neuropsychological Examination

A	В	C	D	E	F	G	В		J	K	L	M	N	0	p	Q	R	5.
ID	BirthDate (Sender	Education		777			cvlt_ld_fr_c				vlt_rec_f	cvlt_rec_f	cvlt_tot_d				
501		2		70	73	15	1.5	16	1.5	16	0.5	0	-1	4	1.5	30	10	22
507	1948	2	1,5	50	51	11	0	9	-1	15	0	0	-1	3.7	1	33	9	20
508	1947	1	15	52	64	11	1	10	0.5	15	0.5	1	-1	3.4	1	27	12	21
510	1956	1	-11	56	62	12	1	12	1	13	-0.5	4	0.5	2	-0.5	37	7	28
512	1935	2	17	61	68	15	1.5	16	2	16	0.5	0	-1	4	1.5	34	10	26
514	1930	1	18	40	54	9	0.5	10	1	15	0.5	1	-1	3.4	1.5	37	9	20
517	1949	1	13	54	60	13	1.5	12	1	15	0.5	5	0.5	2.5	0	24	13	20
518	1942	1	19	45	56	9	0	11	1	14	0	1	-1	3	0.5	38	8	20
519	1944	2	14	61	65	13	1	14	1	16	0.5	1	-0.5	3.7	1	38	8	24
520	1946	1	18	33	41	6	-0.5	7	-0.5	11	-2	3	0	1.8	-1	29	12	24
523	1946	1	19	75	87	16	2.5	16	2.5	16	1	0	-1	4	2	29	12	20
524	1950	2	16	63	66	15	1.5	14	1	16	0.5	0	-1	4	1.5	26	12	21
526	1945	1	18	59	71	12	1	11	- 1	15	0.5	3	0	2.9	0.5	28	12	22
527	1945	2	12	63	66	15	2	14	1	14	-1	1	-0.5	3	0	27	12	18
529	1942	2	19	65	68	14	1.5	13	0.5	14	-1	2	0	2.7	-0.5	28	12	19
530	1949	1	12	50	56	10	0.5	10	0	15	0.5	0	-1	3.7	1.5	24	13	21
532	1949	1	15													34	8	25
533	1948	2	9	58	62	12	1	12	0.5	15	0	0	-1	3.7	1	26	13	21
537	1951	2	-15	61	64	12	0.5	16	1.5	16	0.5	0	-1	4	1.5	27	11	20
538	1956	2	16	66	69	15	1.5	16	1.5	16	0.5	0	-1	4	1.5	28	11	19
539	1950	1	15	62	68	15	2	16	2	16	1	0	-1	4	1.5	37	7	26
542	1954	2	15	58	61	11	0	13	0.5	16	0.5	1	-0.5	3.7	1	35	8	21
543	1946	2	18	65	68	15	2	16	1.5	16	0.5	1	-0.5	3.7	1	35	9	23
544	1945	2	12	51	55	10	0	12	0.5	15	0	0	-1	1.7	1	30	11	22
545	1952	2	15	62	65	12	0.5	13	0.5	14	-0.5	0	-1	3.3	0.5	24	13	21
547	1940	2	17	66	70	16	2	16	1.5	15	0	0	-1	3.7	1	24	14	18
549	1951	2	12	75	80	16	2	16	1.5	16	0.5	0	-1	4	1.5	22	13	19
551	1938	2	10	58	62	15	2	15	1.5	15	0	1	-0.5	3.4	0.5	27	12	26
555	1947	1	16	49	60	11	1	14	2	16	1	0	-1	4	2	42	6	29
556	1932	1	15	32	45	6	-0.5	6	-0.5	11	-2	5	0.5	1.5	-1	35	9	23
558	1933	2	18	61	68	14	1.5	14	1	16	0.5	0	-1	4	1.5	32	11	23
559	1944	1	16	50	62	7	-0.5	9	0	14	0	4	0	2.3	-0.5	19	16	17
560	1951	2	20	56	58	10	-0.5	12	0	16	0.5	0	-1	4	1.5	33	9	21
564	1935	2	10	67	74	11	0.5	13	1	15	0	1	-0.5	3.4	0.5			
566		2	10	53	57	13	1	12	0.5	16	0.5	0	-1	4	1.5	38	8	27
567		2		69	72	14	1		1.5	16	0.5	0	-1	4	1.5	34	8	22
569		2		57	61	12	1		0.5	16	0.5	8	2	2.5	-1	38	8	30
573		2		70	73	15	1.5		1.5	16	0.5	0	-1		1.5	23	13	19
577		2		60	63	16	2		1.5	16	0.5	0	-1		1.5	26	11	19
579		2		65	68	15	1.5		1.5	16	0.5	0	-1	4	1.5	27	11	17
581		2		56	63	15	1.5		1.5	15	0	0	-1		1	28	12	20
583	HIII NOTOKA	1		53	65	12	1		1.5	16	1	0	-1	4	2	35	9	26
586		_2		74	79	16	2		1.5	16	0.5	0	-1	4	1.5	32	10	19
	ortStatsloid		7	500	-0.00			550	700	2-7.7.		1010		-	107000	7.75		1177

Problems in the analysis process

- Slow analysis pipeline
- Analysis limited to a priori hypothesis, i.e., already published research
- Relating different types of data (variables) is challenging
- Work on a subset of data at each iteration of the analysis, lose the overall picture
- Computational tools are often black-boxes

Interactive Visual Analysis Methods (In a Nutshell)

- Multiple visualizations of data
- Selections denoted as focus + context
- Linked selections within views
- Integrated use of computational tools
 - "R for Statistical Computing"
 - PCA, MDS, Clustering, Regression, etc...

Dual Analysis Method

- Treat variables as first-order analysis objects
- Interactive visual analysis in two linked spaces

Dual Analysis Method

Visualizations in the dimensions space

Dimensions are the main visual entities!!

Rich statistics set = rich analysis

- Different statistics for different insights
 - Descriptive statistics, e.g., skewness, kurtosis
 - Robust statistics: e.g., median, IQR, etc.
 - Distribution test scores, e.g., normality
 - Correlation relations
 - •
- Include also the meta-data

For each column, compute *k* statistics

Deviation Plot

Compute " μ " & " α " values using two subsets of items

Higher values for the selection

Change in "µ" values

Cognitive Aging Study Data

MR Imaging

Anatomical Segmentation

- -- **45** brain **segments**, e.g., cerebellum, white matter, ...
- **-- 7 features** for each segment e.g., *number of voxels*, *volume*, ...

2D data table **82** *X* **373**

Personal/Clinical Data

Neuropsychological Examination

Analysis Process

- Generate new hypotheses exploratively
 - Data-driven process
 - Consider a priori expert knowledge
- Use meta-data on dimensions to steer analysis
 - Dependent / independent variables
- 5 hypotheses in short sessions
 - Inter-relations in Test Results
 - Findings Based on Sex
 - Findings Based on Age
 - IQ & Memory Function vs. Brain Segment Volumes
 - Relations within Brain Segments

Findings Based on Age

Relations within Brain Segments

Observations & Limitations

- No need for limitations on a priori knowledge
- Whole data available along the analysis
- Change in working routine!
 - Hypothesis driven analysis to hypothesis generation
- Quickly check for known hypotheses data quality?
- Learning curve? Understanding of statistics
- Overfitting to data / non-optimal solutions

Lessons Learned (for the future)

- Need to incorporate robust methods / tools
- Enable more accurate readings
- Reduce false positives
- Improve usability & visual guidance

Conclusions

- Applicable/generalizable methods to data from other scientific fields
- Interactive use of computational tools, more reliable, easier to interpret
- Quick hypotheses generation, prototyping ideas
 - Then use robust (slow) methods if necessary
- Sweet spot between "hypothesis-driven" & "datadriven" science

Acknowledgments

- Peter Filzmoser, TU Wien
- Julius Parulek, VisGroup @ UIB
- VisGroup @ UIB

