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On the Way towards Topology-Based Visualization of Unsteady Flow 

Introduction

Armin Pobitzer
University of Bergen



What is ”Flow”?

Motion of liquids and gasses 

Mathematically modeled by PDEs
(Navier-Stokes equations)

For visualization: velocity field

generalization: any vector field
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How does the Data look like?

Vector field v: Rⁿ→Rⁿ; x→v(x)

analytic (rare)

simulated  → vectors on grid

Dimenstions

n=2,3

Time dependency

steady flow rare in nature!

time window

What to visualize?

Example: analytic, n=2, steady
v(x,y)=(x,-y)T
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What to Visualize?

Raw data

one possability:
arrows

pro: - intuitive
con: - little information

on path of
particles

- clutter
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What to Visualize?

Ingerational objects

one possability:
path of particles

pro: - information on long term behavior
con: - selective
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What to Visualize?

Topology: segmentation of flow in regions of 
different behavior (asymtocially)

pro: - solid mathematical theory
- holistic
- no clutter
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Why bother?

www.thetruthaboutcars.com
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(Classical) Vector Field Topology



Vector Field Tolopolgy

Based on theory of dynamical systems (H. Poincarè)

Finding topological skeleton:

Computation of crtitical points
i.e. find all x s.th. v(x) = 0

Classification of critical points
based on eigenvalues of the gradient

Computation of the seperatrices
i.e. integration from critical points in direction of the 
eigenvectors

Computation of higher order critical structures
e.g. closed orbits

Classification of higher order critical structures
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Finding the Topological Skeleton

Computation of critical points

Analytical computation (piecewise linear fields)

Numerical computation
Newton–Raphson method

Subdivision methods

Classification of critical points

Near critical point: v(x+h)=v(x)+J(x)h+…=J(x)h+…
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Finding the Topological Skeleton

Computation of separatrices

Integrate in direction e backward or forward in time 
according to the sign of the respective eigenvalue

Computation of higher order structures

Classification of higher order structures
repelling, attracting, saddle-like

[Asi93]
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Separatices
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Separatrices

3D

some occlusion issues, but works
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Periodic Orbits

Poincarè map 
(or first recurrence map)
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Periodic Orbits

Re-entering condition
(based on theorem of
Poincarè-Bendixon)
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Time-dependent fields

Different concepts
streamline: 
time-dependent flow = time-stack of steady

pathline:
path of (massless) particle
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Streamline vs. Pathline

Streamline

solution of initial value problem

x’(t)=v(x(t),s), x(0)=x0

topological segmentation of each time step s

physical interpretation questionable
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Streamline vs. Pathline

Pathline

solution of initial value problem

x’(t)=v(x(t),t), x(0)=x0

spacial intersection

no theory for segmentation
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Pathline seeded at (-0.3, 0.5)T at time t=0.

Integration time [0,2].

Vector field at t=2 in background
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First steps towards time-dependent data 



Tracking of Topology

Extract vector field topology for every time-slice

Indentify corresponding stuctures in adjacent time 
steps

Extracted geometry does not segment flow!
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Bifurcations
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Deficiency of VFT for unsteady flow

Only theoretically justified if the field is “almost” 
steady [Perry and Chong „94]

Extracted structures may not have the claimed 
properties
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Finite Time Lyapunov Exponent (FTLE)

Measure for flow separation (or contraction) over 
time

Made popular by the works of Haller [Hal01, Hal02]

Based on the flow map:
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Finite Time Lyapunov Exponent (FTLE)

Repelling is measured using the flow map gradient

Usually calculated using finite differences

Maximal repelling occurs in the direction of the 
maximal eigenvalue of the squared flow map 
gradient
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Finite Time Lyapunov Exponent (FTLE)

Recall Formula for maximal repelling

FTLE is defined as 

The local maxima of     coincide with the field
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Finite Time Lyapunov Exponent (FTLE)

Haller then defines Lagrangian Coherent Structures 
(LCS) as the height ridges of the field 

Height Ridge: Maximum in 
at least one direction

Attracting LCS obtained by calculating FTLE 
backwards in time
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Finite Time Lyapunov Exponent (FTLE)

Shadden et al. [SLM05] applied FTLE to the „double 
gyre“ example (among others)
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VFT Critical Point
VFT Critical Point

VFT Saddle

VFT Saddle



Finite Time Lyapunov Exponent (FTLE)

Shadden et al. [SLM05] applied FTLE to the „double 
gyre“ example (among others)
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Finite Time Lyapunov Exponent (FTLE)

Shadden et al. [SLM05] applied FTLE to the „double 
gyre“ example (among others)
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Finite Time Lyapunov Exponent (FTLE)

Shadden et al. [SLM05] applied FTLE to the „double 
gyre“ example (among others)

Showed that particles seeded on the ridge follow it

Analytic formula for flux through the FTLE ridge
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FTLE visualization
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Image: Garth 2007

Garth et al. [GLT*09] 
Direct FTLE visualization 
using 2D Transferfunction

[GGTH07] 3D FTLE 
computed as 2D in the 
plane orthogonal to 
the velocity

Ridge computation is 
avoided by volume
rendering



FTLE Ridge extraction

Sadlo et al. [SP07a] FTLE height ridge calculation

Based on adaptive mesh refinement

Starts on a coarse grid and refines cells containing 
the ridge

Ridge extraction based on Hessian 

Filtering of features required
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FTLE Evaluations

Sadlo et al. [SP09] compares VFT to steady FTLE 

(FTLE computed on streamlines) and to unsteady 

FTLE

Steady FTLE very similar to VFT

Unseady FTLE works better than steady FTLE
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FTLE Limitations

Recall FTLE definition

Cauchy-Green tensor in the square-root

Rotational information is discarded when using FTLE

As a result, FTLE has limitations for vortex detection

FTLE only gives information about flow separation –
gives only limited information w.r.t. to VFT

Effect of the choice of time window has not been 
studied sufficiently
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Other Lagrangian Feature Detectors

Fuchs et al. [FPS08] 
local vortex detectors 
for steady flow can be 
adapted by applying 
Lagrangian smoothing

An objective definition 
of a vortex [Hal05]

Measure the time a 
trajectory spends in 
Mz

Mz is a cone in strain
acceleration basis

Objective – i.e. Galilean invariant, works also under 
rotating frames of reference
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Other Lagrangian Feature Detectors

Kasten et al. 2009 [KHNH09]

Unsteady critical points: Minima of the acceleration 

Galilean invariant

Filtering based on long-livingness of critical points
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On the Way Towards Topology-Based Visualization of Unsteady Flow 

Space-time Domain Approaches

Alexander Kuhn
University of Magdeburg



Space-time Domain Approaches

Approach to handle time-dependent data:

lift problem to higher dimension

time as additional space dimension

unsteady case  steady case 

consider path- and streamlines

space and time can be handled in one set

extendable to arbitrary dimensions
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Space-time Domain Approaches

Formal definition:

Given time-dependent 2D vector field

Streamlines:

Pathlines:
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Example vectorfield [TWHS05]

Streamline: 
no physical interpretation

Pathline: 
path of (massless) particle

Space-time Domain Approaches
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Space-time Domain Approaches

Classical theory not applicable

s(x,0): no isolated critical points in general

p(x,1): no critical points at all

critical structures do not coincide

different types of structures

Example topology network [TWHS05]
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Space-time Domain Approaches

Approach:

Feature Flow Field (FFF) [TS03]

support field in same dimension

points into direction of feature

Local definition:
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Space-time Domain Approaches

Applications of FFF:

Tracking of features [TS03, TWHS04. TWHS05]

feature evolvement by Integration

critical point as slice intersection

integrating in f vs. integrating in time

special events:
split

merge

vanish

 Localize and characterize bifurcations
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Space-time Domain Approaches

Applications of FFF:

topological simplification [TRS03a]

vectorfield compression [TRS03b]

extraction of vortex core lines:
ridges / valleys of Galilean invariant quantities [SWH05]

as cores of swirling particle motion [TSW05]
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Space-time Domain Approaches

Applications of FFF:

topological lines in tensor fields [ZP04,ZPP05]

generalization of approach

compact visualization and representation

detection of periodic behavior in LIC data [DLBB07]

sparse temporal sampling

robustness against noisy input data
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Local Methods

Image Analysis

edges and ridges

defined pointwise, based on derivatives

Vector field visualization

height ridge extraction on pressure [MK97]

vorticity magnitude [SKA]

from FTLE to find LCS [SLM05]
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Local Methods

Vector field visualization:

derive quantities using velocity field 

extraction of seperation / attachement lines [KHL99]

vortex core lines:

using addtional physical quantities [BS95, MK97]

velocity and derivatives [LDS90, SH95]
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Local Methods

Unified local formalism: Parallel Vectors [PR99]

comparison to derived or additional vector data

can be defined for extracting lines, surfaces, ... [TSW05]

used to extract height ridges:

simplified description for any dimension

new class of filters [PS09b] 
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Local Methods

Local methods in general

mostly directly applicable for time-dependent case

recent examples:

vortex core extraction for unsteady flow [WST07, FPH08]

reinterpretation of Sujudi & Haimes Operator [SH95]
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Local Methods

Local methods in general

combination with integration-based methods

differences to global methods [KvD93, Ebe96]

steady case: seperatrices only global

unsteady case: local definition valuable
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Local Methods

Geometric approaches

alternative methods for vortex detection [SP99]

clusters of oscilating circle centers

streamlines analysis

winding-angle

distance of start / end point

further extension to characterize 2D vortices [PKPH09]

detection and clustering of loop-intersections

parameter-free and independent of loop-geometry
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Statistical and Multi-Field Methods
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Statistical and Multi-Field Methods 

Exloring flow = consideration of

Multiple features

Ambiguous definitions

Additional measures

Tools:

Interactive Visual Analysis

Fuzzy Feature Detectors
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Interactive Visual Analysis

Balance between automatic analysis and human
percepion

Aims to detect relations between several variabls

Multiple views, linked views, interactive selection
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Interactive Visual Analysis

Feature detectors and other flow measures as 
variables [BMDH07, STH*09] 

Armin Pobitzer - Topology-based Unsteady Flow Visualization STAR 62

[STH*09]

[BMDH07]



Fuzzy Feature Detector

Automatic feature detection using statistical measure
[JWSK07, JBTS08] 

Boolean Operaters on set of trajecories
[SS07,SGSM08]
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Fuzzy Feature Detector

Pattern matching for feature quantification
[EWGS07] 
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Summary

Lagrangian methods:
+ direct physical interpretation
- can not detect all flow structures

Space-time domain approaches:
+ close to classical VFT
- no unified topology description

Local methods:
+ relatively well established
-

Interactive visual analysis:
+ combination of different flow aspects
- no automatic segmentation



Conclusion

There are unsolved problems...

No solution comparable to VFT available

Present aproaches solve problem only partially

... but there is hope as well

Present approaches seem to overlap

Combination of different apraches and methods may 
meet the interst of the user domain better
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Thanks for your attention!

Questions?
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